A star graph implementation in java

Complete program of A star graph in java

package com.thealgorithms.datastructures.graphs;

import java.util.*;

public class A_Star {

    private static class Graph {
        // Graph's structure can be changed only applying changes to this class.

        private ArrayList<ArrayList<Edge>> graph;

        // Initialise ArrayLists in Constructor
        public Graph(int size) {
            this.graph = new ArrayList<>();
            for (int i = 0; i < size; i++) {
                this.graph.add(new ArrayList<>());
            }
        }

        private ArrayList<Edge> getNeighbours(int from) {
            return this.graph.get(from);
        }

        // Graph is bidirectional, for just one direction remove second instruction of this method.
        private void addEdge(Edge edge) {
            this.graph.get(edge.getFrom()).add(new Edge(edge.getFrom(), edge.getTo(), edge.getWeight()));
            this.graph.get(edge.getTo()).add(new Edge(edge.getTo(), edge.getFrom(), edge.getWeight()));
        }
    }

    private static class Edge {

        private int from;
        private int to;
        private int weight;

        public Edge(int from, int to, int weight) {
            this.from = from;
            this.to = to;
            this.weight = weight;
        }

        public int getFrom() {
            return from;
        }

        public int getTo() {
            return to;
        }

        public int getWeight() {
            return weight;
        }
    }

    // class to iterate during the algorithm execution, and also used to return the solution.
    private static class PathAndDistance {

        private int distance; // distance advanced so far.
        private ArrayList<Integer> path; // list of visited nodes in this path.
        private int estimated; // heuristic value associated to the last node od the path (current node).

        public PathAndDistance(int distance, ArrayList<Integer> path, int estimated) {
            this.distance = distance;
            this.path = path;
            this.estimated = estimated;
        }

        public int getDistance() {
            return distance;
        }

        public ArrayList<Integer> getPath() {
            return path;
        }

        public int getEstimated() {
            return estimated;
        }

        private void printSolution() {
            if (this.path != null) {
                System.out.println(
                        "Optimal path: " + this.path + ", distance: " + this.distance);
            } else {
                System.out.println("There is no path available to connect the points");
            }
        }
    }

    private static void initializeGraph(Graph graph, ArrayList<Integer> data) {
        for (int i = 0; i < data.size(); i += 4) {
            graph.addEdge(new Edge(data.get(i), data.get(i + 1), data.get(i + 2)));
        }
        /*
    .x. node
    (y) cost
    - or | or / bidirectional connection
                          ( 98)- .7. -(86)- .4.
                            |
                    ( 85)- .17. -(142)- .18. -(92)- .8. -(87)- .11.
                      |
                     . 1. -------------------- (160)
                      |  \                       |
                    (211) \                     .6.
                      |    \                     |
                     . 5.  (101)-.13. -(138)   (115)
                      |           |     |     /
                    ( 99)       ( 97)   |    /
                      |           |     |   /
        .12. -(151)- .15. -(80)- .14.   |  /
         |            |           |     | /
       ( 71)        (140)       (146)- .2. -(120)
         |            |                       |
        .19. -( 75)- . 0.        .10. -(75)- .3.
                      |            |
                    (118)        ( 70)
                      |            |
                     .16. -(111)- .9.
         */
    }

    public static void main(String[] args) {
        // heuristic function optimistic values
        int[] heuristic = {
            366, 0, 160, 242, 161, 178, 77, 151, 226, 244, 241, 234, 380, 98, 193, 253, 329, 80, 199, 374
        };

        Graph graph = new Graph(20);
        ArrayList<Integer> graphData
                = new ArrayList<>(
                        Arrays.asList(
                                0, 19, 75, null, 0, 15, 140, null, 0, 16, 118, null, 19, 12, 71, null, 12, 15, 151,
                                null, 16, 9, 111, null, 9, 10, 70, null, 10, 3, 75, null, 3, 2, 120, null, 2, 14,
                                146, null, 2, 13, 138, null, 2, 6, 115, null, 15, 14, 80, null, 15, 5, 99, null, 14,
                                13, 97, null, 5, 1, 211, null, 13, 1, 101, null, 6, 1, 160, null, 1, 17, 85, null,
                                17, 7, 98, null, 7, 4, 86, null, 17, 18, 142, null, 18, 8, 92, null, 8, 11, 87));
        initializeGraph(graph, graphData);

        PathAndDistance solution = aStar(3, 1, graph, heuristic);
        solution.printSolution();
    }

    public static PathAndDistance aStar(int from, int to, Graph graph, int[] heuristic) {
        // nodes are prioritised by the less value of the current distance of their paths, and the
        // estimated value
        // given by the heuristic function to reach the destination point from the current point.
        PriorityQueue<PathAndDistance> queue
                = new PriorityQueue<>(Comparator.comparingInt(a -> (a.getDistance() + a.getEstimated())));

        // dummy data to start the algorithm from the beginning point
        queue.add(new PathAndDistance(0, new ArrayList<>(List.of(from)), 0));

        boolean solutionFound = false;
        PathAndDistance currentData = new PathAndDistance(-1, null, -1);
        while (!queue.isEmpty() && !solutionFound) {
            currentData = queue.poll(); // first in the queue, best node so keep exploring.
            int currentPosition
                    = currentData.getPath().get(currentData.getPath().size() - 1); // current node.
            if (currentPosition == to) {
                solutionFound = true;
            } else {
                for (Edge edge : graph.getNeighbours(currentPosition)) {
                    if (!currentData.getPath().contains(edge.getTo())) { // Avoid Cycles
                        ArrayList<Integer> updatedPath = new ArrayList<>(currentData.getPath());
                        updatedPath.add(edge.getTo()); // Add the new node to the path, update the distance,
                        // and the heuristic function value associated to that path.
                        queue.add(
                                new PathAndDistance(
                                        currentData.getDistance() + edge.getWeight(),
                                        updatedPath,
                                        heuristic[edge.getTo()]));
                    }
                }
            }
        }
        return (solutionFound) ? currentData : new PathAndDistance(-1, null, -1);
        // Out of while loop, if there is a solution, the current Data stores the optimal path, and its
        // distance
    }
}

Leave a Comment